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Dynamical organization around turbulent bursts
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The detailed dynamics around intermittency bursts is investigated in turbulent shell models. We observe that
the amplitude of the high wave number velocity modes vanishes before each burst, meaning that the fixed point
in zero and not the Kolmogorov fixed point determines the intermittency. The phases of the field organize
during the burst, and after a burst the field oscillates back to the laminar level. We explain this behavior from
the variations in the values of the dissipation and the advection around the zero fixed point.
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One of the most fundamental problems in turbulence reest and next nearest neighbor shells and phase space volume
search is the understanding of intermittency effd¢dils In  conservation one arrives at the following evolution equations
fully developed turbulent flows laminar quiescent periods ard8]:
interrupted by strong intermittency bursts of high energy dis-
sipation. It is well known both from a number of experiments
and numerical simulations that intermittency effects cause
corrections to the classical Kolmogorov the¢g} when the
structure functions of the velocity field are statistically aver- +&u* u* ) 1fs )
aged over space and/or tirffig. On the other hand very little 4 “n-1¥n-2 n.4
is known about the particular structure of intermittency, as,
for instance, the shape of and the behavior around a specifigith boundary conditiond, =by=c;=c,=ay-;=ay=0.
intermittent burst. It is the purpose of this paper to present 4 is an external, constant forcing, here on the fourth mode.
detailed investigation of the behavior of the velocity field The coefficients of the nonlinear terms must follow the
before and after a burst takes place. We observe a consistgi@fationa,+b,,;+c¢,,,=0 in order to satisfy the conser-
picture in which the velocity gradients, over a small scalevation of energy,E=S |u,|?, when f=v=0. The con-
always becomes organized and vanish just before the energjraints still leave a free parametérso that one can se,
burst sets in by an “explosion” in the field. This is like a =1, b,=—4, c,=—(1- 6) [13]. If helicity conservation is
“calm before the storm” and one can draw an analogy toalso demanded, one obtains the canonical valad/2[12].
depinning charge-density waves, which phase organize justhe set(1) of N coupled ordinary differential equations can
before they slif 3], or self-organized-critical systems in gen- be numerically integrated by standard techniques. In the
eral where bursts or “avalanches” of all sizes can be trig-simulations, we use the following value§=1/2, N=19,
gered even by the slightest perturbatigf. We draw our »=10"%, k,=2"5 f=(1+i)0.005.
conclusions from investigations of shell models for turbu- Taking a closer look at the dynamics of the GOY model
lence, which are completely deterministic systems where thin terms of the complex fieldi,(t)=r ,(t) €'%®  the inter-
intriguing structure of intermittency is created by the internalmittent bursts consist of a collection of different organiza-
chaotic dynamics. Our results indicate that the trivial fixedtions of the amplitudes,,, which travel with exponentially
point in zero and not the Kolmogorov fixed poif§,6] is  increasing speed from the lower up towards the higher shells,
responsible for the intermittency. Shell models are formed bwhere they are damped away by viscogitg]. Every burst
various truncation techniques of the Navier-Stokes equationis the model follows a common pattern, where the most
and have become paradigm models for the study of turbuprominent characteristic is that the amplitudes of the higher
lence at very high Reynolds numbé¢f. The mostly studied modes vanish just before a burst, as shown in Fig. 1. During
shell model is the model of Gledzer-Ohkitani-Yamadathe attraction towards,=0 the phase$,, organize in period
(GOY) [6—-14]. This model yields corrections to the Kolmog- three in the shell index. Just at the point of minimum
orov theory[9] in good agreement with experimerits5—  amplitude, the phases change so that a new organization of
17]. period three occurs during the rapid repulsion from zero.

For the GOY shell model, the wave-number space is diAfter the burst the modes oscillate back to the laminar level
vided intoN separated shells each characterized by a wavewith increasing oscillation period$ig. 1).
number k,=\"k, (A=2), with n=1,... N. The corre- In order to explain these findings we will use that the
sponding amplitude of the velocity field at shell is a  period 3 organization of the phases is present not only at
complex variablas,,. By assuming interactions among near- bursts, but also during most of the evolution. To argue for

this, Fig. 2 shows a long time average of the phase differ-

encesP,(t)=|6,— 6,_3|. We observe, that the assumption
*Electronic address: okkels@nbi.dk holds very well for the highest shells, i.e., that =6, 5,
"Electronic address: mhjensen@nbi.dk 0n—>= 06,1 [19]. With this assumption, the GOY model can
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0 ' ' ' coupling from the nearest shell and obtains an equation for
the time derivative of the phases:

. (6)

: o
0,=cot(S,) r_+ vk,
n

[t}

If we ignore the two neighboring phases in E6) and re-
placeS, with 6,, simple linear stability analysis of E¢6)
. . gives that the phases are attracted/repelled from the fixed

0 40 80 120 160 points 6,= = (m/2) depending on wheth@('rn/rn)wL vkﬁ] is

Time negative/positive. Nearly the same stability conditions are
FIG. 1. The temporal evolutiofEq. (1)] of the logarithmic of found _forsn Wh_en the effect of.the neighboring phases has
the modulus of modes corresponding to the highest shelld€en included in Eq(6) [19]. Direct measurements of the
(T r19) for a time span between two bursts. The uppermostStability of the phases show excellent agreement with the
curve corresponds to shell 15, and the lowest to shell 19. The pastability predicted by the sign df(r,/r,) + vkﬁ]. The only
rameters for the numerical integration are listed in the text. coupling from the phases on the equation of the mojd&di.
(3)] is the factor sing,), which is close to—- 1 during most of

be separated into two coupled ODE’s controlling the evoluthe evolution. If we set sii¥) equal to— 1, the effect of the

10 1

tion of the modulir ,(t) and the phaseg,(t): phases is removed from the equation of the moduli, which
. . , then becomes a GOY model in terms of real variables. By

Mo +ir,0,=— vK3r,+ik,e ' comparing the evolution of the complex and the real valued
TN FUPREE TSR G, GOY modgl we get an estimate of the effect of the phases on

ntlin+2 4in=1in+l 8 n-2'n-1/- the evolution of the complex GOY model. It turns out that

(2)  the phases have roughly no effect on the appearance of bursts
) o _ . since the real valued model creates approximately the same
Both sides have been multiplied ley'» and we have intro-  pyrsts as the complex model. We therefore begin by studying
duced the new variabl&,(t)=27_,60,.;(t), n=1,... N the bursts of the real valued model. The main feature of
—2 with the boundary conditionsSy_»(t)=Sy-1(t)  bursts is the attraction and repulsion of the amplitudes to
=S\(1). S, is the natural phase parameter because the eve; =0, which is a trivial but important fixed point for the
lution of the model is invariant under any rearrangement ofmodel. This dynamics appears as a result of a balance be-
the phases in which the values @&, are conserved tween the viscosity term and the coupling term. In the sim-
[12,19,2Q. By separating Eq(2) into real and imaginary plest form the real valued GOY model can be written as
parts, one obtains
rn=—vk2r,+sin(Sy)Ry, 3 n=Va*Ca, @
. where V,=-— vkﬁrn is the viscosity term andC,
0n=cos{Sn)Rn/rn, (4) :_kn(rn+1rn+2_%rn—lrn+l_%rn—2rn—1) is the Coupling
term, and where the forcing is neglected because we focus on
the dynamics of the high wave numbers. ¥Xs andr, are
(5) proportional with opposite signs, E({) can also be written

asV,=—vk3(V,+C,). The values oW/, are shown in Fig.

R, is the real val_ugd coupling from the nearejst.shells on the by a grid of arrows. Only th¥,, field is shown by arrows
nth shell. Combining Eqgs(3) and (4) one eliminates the g this determines the change in the attract@rrepulsion

to (or from) the fixed point. Furthermore, the values @f
] are not universal. Also shown are trajectories Wf, (C,,)
o8f . during a burst, both of the real valued modsblid) and the

i 1 complex modekdotted (for the complex model the moduli
are drawn. The dashed straight line shows where the flow

vanishes (,=0). First we notice that the qualitative similar-
ity between bursts in the real valued and complex model
show the weak effect of the phases on bursts. From the flow
field in Fig. 3 we see that without variations in the coupling

where

_ 1 1
Rn_kn(rn+1rn+2_Zrnflrn+l_§rn72rnfl)-

1.0T T T T

o.o: , , , ] term, the amplitude will stabilize at the dashed line.
11 13 15 17 19 Each stage of the dynamics is labeled in Fig. 3. During
Shells the attraction, labeled, the viscosity term and the coupling

FIG. 2. The time average d?,(t)=|6,— 6, 5| normalized by term balance each other with a slight dominance of the yis-
7 vs the shell numben. Note that the phase organization corre- C0§|ty term. _Because the traJeCt_ory approaches the fixed
sponding toP,(t)=0 holds very well for the highest shells. The POINtr,=0 with decreasing velocity and becaysg,| and
rise of the graph ab=19 is due to a boundary effect. |C,| are much larger thatr |, the trajectory always ap-
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0.0 tude reaches its maximum, after which it is again attracted

towards zero by the dominance of the viscosity. The motion
is highly excited by the burst and the amplitude oscillates
around the line. The oscillations are damped away and the
amplitude settles again close to the dashed line where the
picture is now repeated again beginninghat

From the above scenario it is possible to give an explana-
tion as to why bursts are created in the GOY model: the
amplitude gets trapped at the fixed point in zero and can only
be released when a burst arrives from the lower shells. As
soon as a weak burst is created at the low shells, it continues
all the way to the highest shells because the stability of

0.0 0.5 1.0 1.5 higher shells are changed by the approaching buitst. in-
Cur(t) termittency is created by a “domino” effect through the

FIG. 3. Trajectories oV, vs C, during a burst for the real shells. The highest and the_lowe_st shells evolve differently
valued model, Eq(7) with forcing added(solid curve, and the because t_he effect of the viscosity reduces tqwards the low
complex model, Eq(1) (dotted curviz On the same graph is shown Shells. This reduces the attraction of the amplitudes towards
the flow field of the viscosity, visualized by arrows. The dashed Z€r0, which makes it less possible for bursts to occur and
line shows wherd/,=0. The labels represent the attraction to the gives _mstead a slow random walk dynamics with Gaussian
fixed pointr =0 (A), the repulsion away from the fixed poir), statistics. The low shells therefore produce slow random per-

and maximum amplitude of the fielc]. The arrows on the trajec- turbations that propagate up through the shells and release

tories indicate the direction of the temporal evolution. bursts at large shellmall scalg. '
In conclusion, we have described the mechanism of the

proaches =0 tangentially to, but slightly below, the diag- Ccreation of intermittent bursts in the GOY model. The results
onal V,,= — C,,. When approaching,=0 the trajectory can Show that the creation of a burst is determined by a delicate

only be kicked away by variations in the coupling term, andPalance between the viscosity and advection terms. We
the absence of these variations makes the amplitude stabili#Berefore believe that a similar scenario might be present in
close to zero. The delicate balance betwdgnand C, is  Other intermittent, turbulent systems and also in experiments.
therefore responsible for the long lasting laminar regime€ur main observation is that a burst is associated with a
between the bursts. “fingerprint:” The amplitudes of the high wave-number
As soon as a burst approaches from the lower shells thB10des vanish before the burst. An experimental time signal,
coupling term becomes large and the trajectory is forced@y from hot wire measurements, might indeed show similar
away fromr,=0 in a given directior(labeledB in Fig. 3  Ccharacteristics. We are in the process of investigating this
into a regime of positive,,. This direction is not universal; uhsi;n%i;’;i;glnethggagssf birgrl:n ddorgger:g;ils. S 'mc':l::n\gssr:(;;' d
by construction it depends on the value of the amplitudes i Ui [22] y by
the neighboring shellg21]. At the end of the repulsion, la- J '
beledC, the coupling becomes less dominant over the vis- We are grateful to P. Bak, T. Bohr, S. Ciliberto, T. Dom-

cosity, and this is seen in Fig. 3 as a turning towards thére, K. Hansen, J. Kockelkoren, and G. Zocchi for discus-
dashed equilibrium line. As this line is crossed, the ampli-sions and suggestions.
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