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Dynamical organization around turbulent bursts

Fridolin Okkels* and Mogens H. Jensen†

Niels Bohr Institute and Center for Chaos and Turbulence Studies, Blegdamsvej 17, DK-2100 O” , Denmark
~Received 6 October 1997!

The detailed dynamics around intermittency bursts is investigated in turbulent shell models. We observe that
the amplitude of the high wave number velocity modes vanishes before each burst, meaning that the fixed point
in zero and not the Kolmogorov fixed point determines the intermittency. The phases of the field organize
during the burst, and after a burst the field oscillates back to the laminar level. We explain this behavior from
the variations in the values of the dissipation and the advection around the zero fixed point.
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One of the most fundamental problems in turbulence
search is the understanding of intermittency effects@1#. In
fully developed turbulent flows laminar quiescent periods
interrupted by strong intermittency bursts of high energy d
sipation. It is well known both from a number of experimen
and numerical simulations that intermittency effects ca
corrections to the classical Kolmogorov theory@2# when the
structure functions of the velocity field are statistically av
aged over space and/or time@1#. On the other hand very little
is known about the particular structure of intermittency,
for instance, the shape of and the behavior around a spe
intermittent burst. It is the purpose of this paper to prese
detailed investigation of the behavior of the velocity fie
before and after a burst takes place. We observe a consi
picture in which the velocity gradients, over a small sca
always becomes organized and vanish just before the en
burst sets in by an ‘‘explosion’’ in the field. This is like
‘‘calm before the storm’’ and one can draw an analogy
depinning charge-density waves, which phase organize
before they slip@3#, or self-organized-critical systems in ge
eral where bursts or ‘‘avalanches’’ of all sizes can be tr
gered even by the slightest perturbation@4#. We draw our
conclusions from investigations of shell models for turb
lence, which are completely deterministic systems where
intriguing structure of intermittency is created by the intern
chaotic dynamics. Our results indicate that the trivial fix
point in zero and not the Kolmogorov fixed point@5,6# is
responsible for the intermittency. Shell models are formed
various truncation techniques of the Navier-Stokes equat
and have become paradigm models for the study of tur
lence at very high Reynolds numbers@5#. The mostly studied
shell model is the model of Gledzer-Ohkitani-Yama
~GOY! @6–14#. This model yields corrections to the Kolmog
orov theory@9# in good agreement with experiments@15–
17#.

For the GOY shell model, the wave-number space is
vided intoN separated shells each characterized by a wa
number kn5lnk0 (l52), with n51, . . . ,N. The corre-
sponding amplitude of the velocity field at shelln is a
complex variableun . By assuming interactions among nea

*Electronic address: okkels@nbi.dk
†Electronic address: mhjensen@nbi.dk
571063-651X/98/57~6!/6643~4!/$15.00
-

e
-

e

-

,
ific
a

ent
,
gy

st

-

-
e
l

y
ns
u-

i-
e-

est and next nearest neighbor shells and phase space vo
conservation one arrives at the following evolution equatio
@8#:

S d

dt
1nkn

2Dun5 iknS anun11* un12* 1
bn

2
un21* un11*

1
cn

4
un21* un22* D1 f dn,4 , ~1!

with boundary conditionsb15bN5c15c25aN215aN50.
f is an external, constant forcing, here on the fourth mod

The coefficients of the nonlinear terms must follow t
relation an1bn111cn1250 in order to satisfy the conser
vation of energy,E5(nuunu2, when f 5n50. The con-
straints still leave a free parameterd so that one can setan
51, bn52d, cn52(12d) @13#. If helicity conservation is
also demanded, one obtains the canonical valued51/2 @12#.
The set~1! of N coupled ordinary differential equations ca
be numerically integrated by standard techniques. In
simulations, we use the following values:d51/2, N519,
n51026, k05225, f 5(11 i )0.005.

Taking a closer look at the dynamics of the GOY mod
in terms of the complex fieldun(t)5r n(t) eiun(t), the inter-
mittent bursts consist of a collection of different organiz
tions of the amplitudesr n , which travel with exponentially
increasing speed from the lower up towards the higher sh
where they are damped away by viscosity@18#. Every burst
in the model follows a common pattern, where the m
prominent characteristic is that the amplitudes of the hig
modes vanish just before a burst, as shown in Fig. 1. Dur
the attraction towardsun50 the phasesun organize in period
three in the shell indexn. Just at the point of minimum
amplitude, the phases change so that a new organizatio
period three occurs during the rapid repulsion from ze
After the burst the modes oscillate back to the laminar le
with increasing oscillation periods~Fig. 1!.

In order to explain these findings we will use that t
period 3 organization of the phases is present not only
bursts, but also during most of the evolution. To argue
this, Fig. 2 shows a long time average of the phase dif
encesPn(t)5uun2un23u. We observe, that the assumptio
holds very well for the highest shells, i.e., thatun215un12,
un225un11 @19#. With this assumption, the GOY model ca
6643 © 1998 The American Physical Society
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be separated into two coupled ODE’s controlling the evo
tion of the modulir n(t) and the phasesun(t):

ṙ n1 ir nu̇n52nkn
2r n1 ikne2 iSn

3~r n11r n122 1
4 r n21r n112 1

8 r n22r n21!.

~2!

Both sides have been multiplied bye2 iun and we have intro-
duced the new variableSn(t)5( j 50

2 un1 j (t), n51, . . . ,N
22 with the boundary conditionsSN22(t)5SN21(t)
5SN(t). Sn is the natural phase parameter because the
lution of the model is invariant under any rearrangemen
the phases in which the values ofSn are conserved
@12,19,20#. By separating Eq.~2! into real and imaginary
parts, one obtains

ṙ n52nkn
2r n1sin~Sn!Rn , ~3!

u̇n5cos~Sn!Rn /r n , ~4!

where

Rn5kn~r n11r n122 1
4 r n21r n112 1

8 r n22r n21!. ~5!

Rn is the real valued coupling from the nearest shells on
nth shell. Combining Eqs.~3! and ~4! one eliminates the

FIG. 1. The temporal evolution@Eq. ~1!# of the logarithmic of
the modulus of modes corresponding to the highest sh
(r 15, . . . ,r 19) for a time span between two bursts. The upperm
curve corresponds to shell 15, and the lowest to shell 19. The
rameters for the numerical integration are listed in the text.

FIG. 2. The time average ofPn(t)5uun2un23u normalized by
p vs the shell numbern. Note that the phase organization corr
sponding toPn(t).0 holds very well for the highest shells. Th
rise of the graph atn519 is due to a boundary effect.
-
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f

e

coupling from the nearest shell and obtains an equation
the time derivative of the phases:

u̇n5cot~Sn!S ṙ n

r n
1nkn

2D . ~6!

If we ignore the two neighboring phases in Eq.~6! and re-
placeSn with un , simple linear stability analysis of Eq.~6!
gives that the phases are attracted/repelled from the fi
pointsun56(p/2) depending on whether@( ṙ n /r n)1nkn

2# is
negative/positive. Nearly the same stability conditions
found for Sn when the effect of the neighboring phases h
been included in Eq.~6! @19#. Direct measurements of th
stability of the phases show excellent agreement with
stability predicted by the sign of@( ṙ n /r n)1nkn

2#. The only
coupling from the phases on the equation of the moduli@Eq.
~3!# is the factor sin(Sn), which is close to21 during most of
the evolution. If we set sin(Sn) equal to21, the effect of the
phases is removed from the equation of the moduli, wh
then becomes a GOY model in terms of real variables.
comparing the evolution of the complex and the real valu
GOY model we get an estimate of the effect of the phases
the evolution of the complex GOY model. It turns out th
the phases have roughly no effect on the appearance of b
since the real valued model creates approximately the s
bursts as the complex model. We therefore begin by study
the bursts of the real valued model. The main feature
bursts is the attraction and repulsion of the amplitudes
r n50, which is a trivial but important fixed point for the
model. This dynamics appears as a result of a balance
tween the viscosity term and the coupling term. In the si
plest form the real valued GOY model can be written as

ṙ n5Vn1Cn , ~7!

where Vn52nkn
2r n is the viscosity term and Cn

52kn(r n11r n122 1
4 r n21r n112 1

8 r n22r n21) is the coupling
term, and where the forcing is neglected because we focu
the dynamics of the high wave numbers. AsVn and r n are
proportional with opposite signs, Eq.~7! can also be written
asV̇n52nkn

2(Vn1Cn). The values ofV̇n are shown in Fig.

3 by a grid of arrows. Only theV̇n field is shown by arrows
as this determines the change in the attraction~or repulsion!
to ~or from! the fixed point. Furthermore, the values ofĊn
are not universal. Also shown are trajectories of (Vn ,Cn)
during a burst, both of the real valued model~solid! and the
complex model~dotted! ~for the complex model the modul
are drawn!. The dashed straight line shows where the flo
vanishes (ṙ n50). First we notice that the qualitative simila
ity between bursts in the real valued and complex mo
show the weak effect of the phases on bursts. From the fl
field in Fig. 3 we see that without variations in the couplin
term, the amplitude will stabilize at the dashed line.

Each stage of the dynamics is labeled in Fig. 3. Dur
the attraction, labeledA, the viscosity term and the couplin
term balance each other with a slight dominance of the
cosity term. Because the trajectory approaches the fi
point r n50 with decreasing velocity and becauseuVnu and
uCnu are much larger thanu ṙ nu, the trajectory always ap-
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proaches rn50 tangentially to, but slightly below, the diag
onal Vn52Cn. When approachingr n50 the trajectory can
only be kicked away by variations in the coupling term, a
the absence of these variations makes the amplitude stab
close to zero. The delicate balance betweenVn and Cn is
therefore responsible for the long lasting laminar regim
between the bursts.

As soon as a burst approaches from the lower shells
coupling term becomes large and the trajectory is for
away fromr n50 in a given direction~labeledB in Fig. 3!
into a regime of positiveṙ n . This direction is not universal
by construction it depends on the value of the amplitude
the neighboring shells@21#. At the end of the repulsion, la
beledC, the coupling becomes less dominant over the v
cosity, and this is seen in Fig. 3 as a turning towards
dashed equilibrium line. As this line is crossed, the am

FIG. 3. Trajectories ofVn vs Cn during a burst for the rea
valued model, Eq.~7! with forcing added~solid curve!, and the
complex model, Eq.~1! ~dotted curve!. On the same graph is show
the flow field of the viscosityVn visualized by arrows. The dashe

line shows whereV̇n50. The labels represent the attraction to t
fixed pointr n50 (A), the repulsion away from the fixed point (B),
and maximum amplitude of the field (C). The arrows on the trajec
tories indicate the direction of the temporal evolution.
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tude reaches its maximum, after which it is again attrac
towards zero by the dominance of the viscosity. The mot
is highly excited by the burst and the amplitude oscilla
around the line. The oscillations are damped away and
amplitude settles again close to the dashed line where
picture is now repeated again beginning atA.

From the above scenario it is possible to give an expla
tion as to why bursts are created in the GOY model:
amplitude gets trapped at the fixed point in zero and can o
be released when a burst arrives from the lower shells.
soon as a weak burst is created at the low shells, it contin
all the way to the highest shells because the stability
higher shells are changed by the approaching burst.The in-
termittency is created by a ‘‘domino’’ effect through th
shells.The highest and the lowest shells evolve differen
because the effect of the viscosity reduces towards the
shells. This reduces the attraction of the amplitudes towa
zero, which makes it less possible for bursts to occur a
gives instead a slow random walk dynamics with Gauss
statistics. The low shells therefore produce slow random p
turbations that propagate up through the shells and rele
bursts at large shells~small scale!.

In conclusion, we have described the mechanism of
creation of intermittent bursts in the GOY model. The resu
show that the creation of a burst is determined by a delic
balance between the viscosity and advection terms.
therefore believe that a similar scenario might be presen
other intermittent, turbulent systems and also in experime
Our main observation is that a burst is associated wit
‘‘fingerprint:’’ The amplitudes of the high wave-numbe
modes vanish before the burst. An experimental time sig
say from hot wire measurements, might indeed show sim
characteristics. We are in the process of investigating
using wavelet analysis around the bursts. Similar work
this direction has also been done recently by Camussi
Guj @22#.

We are grateful to P. Bak, T. Bohr, S. Ciliberto, T. Dom
bre, K. Hansen, J. Kockelkoren, and G. Zocchi for disc
sions and suggestions.
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